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Wire and Strip Conductors over a
Dielectric-Coated Conducting or

Dielectric Half-Space

RONOLD W. P. KING, LIFE FELLOW, IEEE

Abstract —The complex wavenumber and characteristic impedance are

determined for a wire or fiat strip over a dielectric-coated half-space that

may be a conductor or a dielectric with large permittivity. Elevated

microstrip is an example of the configuration. The properties of the wire as

an antenna or transmission line are determined from those of the insulated

antenna with a two-layer eccentric insulation. The theory is extended to

the strip conductor with the help of a comparison of the tnbular and strip

conductors over a perfectly conducting half-space.

I. INTRODUCTION

T HE PROPERTIES of the horizontal wire antenna

over a conducting earth are well known [1]. They were

derived from the theory of the dipole antenna with an

eccentric dielectric coating [2]. This analysis was subse-

quently extended to the wave antenna of the generalized

Beverage type [3]. The procedure carried out in this earlier

study is applied in this paper to the horizontal wire an-

tenna over the same half-space but when it is coated with a

layer of dielectric material. In the formulation use is made

of the analysis of the shielded transmission line with an

eccentric inner conductor [4], [5]. As a final step, the

properties of the strip antenna or transmission line are

derived from those of the wire conductor with the help of

the identity of the integral equations for coupled tubular

and strip conductors [6].

The analysis resembles that of open-wire transmission

lines in that radiation into the air is neglected in the

determination of the wavenumber and characteristic

impedance and, therefore, of the current distribution. This

is an excellent approximation when the conducting wire or

strip is located at small electrical distances from the dielec-

tric-coated half-space. Once the current distribution is

known in terms of its dependence on the electrical proper-

ties of the several media involved, the electromagnetic field

can be calculated from the known field of a unit horizontal

dipole over a three-layered region [7].
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Fig. 1. Three equlpotential circles with p. = 0.3, Pb = 0.6, and p.= 1.
The wavenumbers of the four regions bounded by these circles are k,,

j=l,2,3,4.

IL REVIEW OF THE THEORY OF THE TWO-LAYER

ECCENTRICALLY INSULATED CONDUCTOR

The cross section of the cylindrical structure to be

studied initially is shown in Fig. 1. It consists of four

regions separated by three circular boundaries with the

radii a, b, and c. These bound~ries are equipotential

surfaces for the vector potential A = 2A, and the scalar

potential q. The four regions are: region 1, a conducting

wire or tube with radius a and complex wavenumber

kl = /31+ ial = (1+ i)( CJpOUl/2)1/2; region 2, air with the

radius b and the wavenumber k ~ = o ( POC~)1’2; region 3, a

dielectric with radius c and the wavenumber kz = & + itxj
= q&(c3 + io3/a )1/2 with U3/CM3 <<1; and region 4, the

half-space outside the dielectric with the wavenumber kd

= ~~ + ial = up~/2(c4 + Zu4/ti)l/2. It is required that

lkJ >> Ik,l > k2. (1)
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lt is assumed that in each cross-sectional plane the two-

dimensional Laplace equation k an adequate approxima-

tion, but that the wave equation applies in the axial

direction, z. Thus, for the vector potential, the equation k

each transverse plane k

a2Az a2Az
—=0

aX2 + ayz
(2)

and the appropriate solution is

where do is a constant distance and K = poIz( z )/2 v is a

function of the axial coordinate z alone. 1,(z) is the total

axial current in the conductor with the radius a.

equipotential circles with constant p are defined by

(x+do)’+ yz=e’’[(x-do)z+yz]

or

(x - docoth2p)2+ yz = sinf2p

The

(4)

where 0< p < co. Note that the surface p = O is the yz

plane, x = O; and p = m defines the line x = do, y =0.

The center of a typical circle is at

x = dOcoth2p y=() (5)

and its radius is

do
~=

sinh 2p “
(6)

The three circles shown in Fig. 1 have their centers at

X. = dOcoth2pa Xb = do coth2p~ Xc= dOcoth2pC

(’i’)

and the radii

do do do
~= b= ~= — (8)

sinh 2 pa sinh 2 pb sinh 2pC”

Note that the circle of zero radius and p = m is at

XO= do = a sinh2pa = bSkh2pb = csinh2pc. (9)

The distance do is a principal parameter.

The points of intersection of the circles

are at

xl, = dO tanh pj and X21 = do coth PI,

The shortest distance between the circle pb

with the x axis

j=a, b,c.

and p, is

(lo)

1 = Xlb – Xlc = do(tanh ~b – tanh p.). (11)

It is a second principal parameter.

It is convenient to refer the potentials on the several

circles to the potential on circle c and define the following
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Fig. 2. Center-driven two-layer (regions 2 and 3) eccentrically insulated
conductor (region 1) in an infinite dielectric or conducting region 4.

potential differences:

W.Z = A.=– ACZ= ‘K(P. – pC) (12)

WbZ = A~Z– ACZ= ‘K(pb– pC). (13)

The equipotential circles can be expressed in terms of

their radii and the distances D between their centers.

These latter are

Dac=xC–x
a

DbC = Xc – Xb

Dab ~ Xb – Xa Do=xC– do. (14)

With (7) and (8),

‘pa = cosh-l [c2-~~~]=cosh-[b2-;j~~]

(15a)

2pb = cosh-l

(cz-:~::)=cosh-’(b’-:~::)
(15b)

The normalized potential differences O = WZ/K are ob-

tained with the formula

cosh-lx –cosh–l y =cosh–l [xY-@2-l)(Y2-0].

(16)

Thus,

(a2+c2– D~C

‘.. = 2(P. – PC) = cosh-l 2 ac )
(17a)

(

b2 + C2 – D;C
~b; = 2(pb – pC) = cosh-l

2bc )
(17b)

a.b= Z(P. – Pb) =cosh-l
( )

‘2+ :;; ‘:’ . (17C)

III. TRANSMISSION-LINE PROPERTIES OF THE

TWO-LAYER ECCENTRICALLY

INSULATED CONDUCTOR

The eccentrically insulated center-driven conductor is

shown in Fig. 2. The wavenumber k~ for the current in the

conductor and the characteristic impedance ZC are given in
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Fig. 3. Two-layer eccentrically insulated conductor in an infinite con-

ducting region as a transmission line.

[5]. With minor changes in the notation, they are

‘L=k2F1+AE’iT(18)

-%= #[%, +(’,/’J2Q,.] (19)
2

where {z = {0 = 120w !2,

[

L?

I

1/2

F=
ac

(20)
flab + (kJkJ2flbc

and

()@l)(’4c) +2 ~ ~.c~o m ~:)(’zc)
‘(~.c>c)) = Hfv(’gc)

~=1 C2 H:~l(k4c) “

(21)

The current in the center-driven conductor when it has

the length 2h is

ZVO sinkL(h– Izl)
1=(2)=–= (22)

c cosk=h “

When the conductor is infinitely long or is terminated in

its characteristic impedance as shown in Fig. 3, the current

is

~z(z) = :e’k’z, 2>0. (23)
c

IV. THEORY OF THE TWO-LAYER ECCENTRICALLY

INSULATED CONDUCTOR OVER A CONDUCTING

OR DIELECTRIC HALF-SPACE

The next step in the analysis is to let the radius c of the

outer circular boundary between regions 3 and 4 become

infinite (c ~ cc) so that p. ~ O and region 4 becomes a

half-space with the plane boundary at x = O, as shown in

Fig. 4. If the nearest distance to the circle p~ is maintained

at xl~ – XIC = 1, it follows from (10) that

Pb = tanh-l (z/~o) (24)

since XIC = O. With (8) the radius b is

do

b = sinh [2tanh-1 (l/do)]
(25)

and, with (7), the center of the circle is at

x~ = docoth [2tanh-1 (J/do)]. (26)

In order to take the limit c ~ co, xc - co, it is necessary

to obtain an explicit formula for b in terms of the distance

1, the radius c, and the distance D.= x. – d.. With (7) and

kq

2d0

Y

dO

3
Xlc=o

-dO

-2d0
(

Fig. 4.

x

Three equipotential circles with pC= O, ph = 0.088, and pa= 1

(8), itfollows that (xC/c)2 – (do/c)2 = 1 so that

do= {~ For XC= do+c (27a)

Do=xC–~~ or XC= (D;+ c2)/2Do. (27b)

It follows from (7) and (8) with (15b), viz.,

Xb # – b, _ D:,

Z_= cosh 2pb =
2bDbC

(28)

that

b2 +2x~DbC – C2 + D:C = O. (29)

With x~=xC– D~Cand D~c=c–b–l,

2( C–l)(XC– C)–1’
b=

2( XC– C+l) “
(30)

With (27a),

2(c–1)(/~–c)–12
b= (31)

2( J~-c+lj “

It is now possible to let c + m, XC+ co. With ~~ +

c + (d~/2c), it follows that 2(c – 1)(~~ – C) +

2c(d~/2c) = d; and ~~ – c ~ O, so that

d; – 12
b=T. (32)

The center of the circle p~ is at

d;+12
x~=b+l=

21 “
(33)

The corresponding formulas for the circle with the ra-

dius a are obtained from

x~ – Xa = bcosh2ph – acosh2pa

“’” \.
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where As a check on (40a) –(40c), use can be made of (20), viz.,

D~C= XC – Xa and DbC= XC– Xb. (35) Q
F2 = ac

When (35) is used in (34), this can be rearranged to give
‘ab + (b’h)2%c “

(41)

(xb–xa)[(xc -Xa)(Xc–%)-C2 -1] It is readily verified with the formula cosh - 1x + cosh - 1y

+b2(xC– x.)–a2(xC–xb) =0. (36) =cosh ‘l[xy+ (x2–l)(y2– 1)] that, when k2=k3,

When c ~ co, XC~ co, this yields
F2=1.

It remains to evaluate A(DaC, O) in (21) in the limit
x~–x~=b2–a2. (37) c ~ m, XC~ co. The first step is to determine

With (32) and (33), D.CDO (XC- Xa)(Xc - do)
— .

(d:+12)2 (d; -12)2 C2

x~=x~–b2+a2=
412 – 412 ‘U2

(lti:lm)(/Zm--do)
=d~+a2 (38) =

or

xa~d= d~+a2 and do = 4=. (39) +(1-W)(::). (42)

It is convenient to denote the distance x. from the bound- With (42), (21) becomes

ary x = O to the center of the conductor with the radius a

by d since this is a principal parameter. Hjl) ( k~c)

()

m

A(D.c50) = HfJ(k4c)
It remains to evaluate the functions L? defined in

+2~ l–~
~=1 c

(17a) -(17c) in the limit c ~ co, XC= (C2 -t d; + co. The

results are

(

a2+ C2– D~C
QaC= cosh-l

2 ac )

[

a2+c2–(xC–xa)2
= cosh– 1

2 ac 1
Xa d

+cosh–l —=cosh–l —
a a

“’c=cOsh-1(b2+~:D’c)
()d;+ 12

. cosh–l~=cosh-l —d:–lz

(a2-+b2– D~b
$lab = cosh-l

2ab 1

[

a2+b2–(xb–xa)2
= cosh -1

2ab 1
so that, with (32), (33) and (39),

(40a)

(40b)

It is shown in [1] that, in the limit c -+ co,

A(DaC,O)

kdc
=A(A)

(,AA3A5 )1
1,’2,

‘z 1+X+1575+”””
(44)

where KI and 11 are the modified Bessel functions, and

A=k4(d+~~”). (45)

When (44), (41) and (40a) -(40c)

and (19), these give

[

Qac+A(A) I
1/2

k== k2
aab + (%’’k3)2~b.

are substituted in (18)

(46)

L
Zc = ~[~ab+(kd’&)2fh)c]1’2[flaC+A(A)] 112. (47)

[

d(d2–a2+ 12)–21(d2–a2) 1
V. THE SERIES IMPEDANCE AND SHUNT

flab = cosh-l (40C) ADMITTANCE PER UNIT LENGTH
a(d2–a2– 12) “

The complex wavenumber and characteristic impedance
These quantities are expressed in terms of the thickness 1 can be expressed in terms of the series impedance per unit

of the dielectric layer, the radius a of the conductor, and length z~ and the shunt admittance per unit length y~.

the height d of its center over the plane boundary x = O These are related to k~ and ZC by

between the dielectric layer and the conducting or dielec-

tric half-space. k~ = {~ Zc = {~ (48)
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/-’

@p
Ha
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z== — ik~ZC= z’+ z: (49)

(50)
1 Zc 1 1

— .— .— +—.
yL ikL y2 y3

With (46) and (47),

zL=ze+zj=— ~ [%, +-(WL)’%]
2

. -%[O=C+A(A)]

,&.6oO>\ /< 600>/
/ \

(a) (b)

Fig. 5. Approximately equivalent two-layer eccentrically insulated
conductors.

(51)

so that the external impedance per unit length z e and the

internal impedance per unit length Z: of the conducting

half-space are a=~=fib
(a) (b)

Fig. 6. Approximately equivalent two-layer mstrlated conductors when
the radius of the boundary between regions 3 and 4 is infimte.

iwp O
ze=—lu[e=— —---Q

2V a’

z~= – :A(A)

(52)

[

iupo 1 K,(A) + i7r11(A)
— _— .———

‘i? AZ A 2A

(

A A3 A5

)1

1/2

“ —+—+— “.”

‘1 3 45
+

1575

The final complete formulas for kL and ZC are

(53a) kL =

z’=
with

:[~ab+(k2/k3)’Qbc]”2
(53b)

[

kl

1

1/2

. fl=c+———— +A(A) . (60)
apOaul

The formula (51) does not include the internal impedance

of the conductor. This can be added to (51) so that

When regions 1 and 4 are perfect conductors and regions 2ZL=Z:+Z:+Z= (54)
and 3 are perfect dielectrics,

where

[

Q

1

1/2

kL = k2
ac

f2ab+(c2/E3)flbc
(61)ikl 1 – i @pO 1’2

‘;= – 2~au1 (]

.— —
2T 201 “

(55)

-%= ~{ Qa.[Qab+(’2/’3)Qbc]}1’2. (62)
With (46) and (47), (50) gives

When 63 = 62,
.

1’

22 [%+( k2/h)2%c] = 3 + 1 (56)
—=—

yL 2 Y2 Y3

so that
These are the values for a perfectly conducting wire over a

perfectly conducting half-space.

VI. THE ECCENTRICALLY INSULATED TUBULAR

CONDUCTOR OVER A DIELECTRIC-COATED

DIELECTRIC OR CONDUCTING HALF-SPACE

The formulas for kL and Z= derived in Sections IV and

V apply to the structure shown in Fig. 5(a) when the radius

c of the boundary between regions 3 and 4 is made infinite

to obtain the configuration in Fig. 6(a). Region 4 is now a

half-space with a plane boundary between it and the

1 i~2 1 i(2
— —.— Q —Q

2~kz “b — = 2nk3 b’”
(57)

Y2 Y3

With f2/k2 =l/ucO, {2k2/k~ =1/(@f3 + ius),

27riuc0
y2=–iac2=– —————

$2ab

27TIJ3 2niuc3

Y3=g3–iuc3=— —!il-abc”
(58)

bc
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dielectric layer which has a large radius b and a minimum

thickness L

In practice, the configuration shown in Fig. 6(b) is more

useful. It consists of the conductor (region 1) with radius a

in air (region 2) over a half-space (region 4) that is coated

with a dielectric (region 3) with the uniform thickness 1.

This can be looked upon as the eccentrically insulated

conductor shown in Fig. 5(b) in the limit c + m, b ~ m.

It is shown in [5] that the electromagnetic field on the

circle ph in Fig. 5(a) decreases rapidly outside the 60°

angle when a/c = 0.1 and d/c =1/3, so that the field in

the remaining 300° is very small and it is immaterial

whether the dielectric in region 3 has the shape shown in

Fig. 5(a) or Fig. 5(b) insofar as the values of kL and ZC are

concerned.. It follows that (18) and (19) should be good

approximations for the configuration of Fig. 5(b) and, in

the limit when c + O-J,(59) and (60) for Fig. 6(a) should be

good approximations for Fig. 6(b). Note, however, that

with 1 and b fixed, d – 1 cannot be made arbitrarily small

without simultaneously letting the radius a approach the

large radius b which goes with a small value of 1.

VII. THE STRIP CONDUCTOR OVER A

DIELECTRIC-COATED HALF-SPACE

The formulas (59)-(63) for the circular conductor over a

dielectric-coated half-space can be modified to apply to a

flat strip conductor (Fig. 7) with the width 2W = 4a and

the thickness t.This latter is assumed to be small com-

pared with the skin depth, so that the internal impedance

per unit length of the strip is

(64)

It is shown in [6] that the constants ZL and yL of the

stripline with width 2 w = 4a differ from those of the line

with circular tubular conductors given in (51) and (56)

only in the substitution of ~= for d. It follows that,

with (64) and (51),

zL=z’+z; +zj (65)

where

itipo
ze=–i6de=– —a

iwpo ~o,h:; L&7
. _——

2T
(66)

a

itipo ir
z~=—_

2V 2wpoacrct

z:= - *A(A)

(67)

(68)

where

[

K,(A) + ZTI1(A)
A(A)=2 ;–~

2A

(A A3 A5

)1

1/2

‘i l+X+ ‘“””1575
(69)

2W=4CIRegion 1, kl~
u

Region 2, k2 -F
tl

7
//’// Region, 3,’ k: z/////, ~// I!’z

Region 4, k.

Fig. 7. Strip conductor in air over a dielectric-coated half-space,

and

A=k4(d+~=).

Similarly,

111
—

yL–~+k

where

1 i[z
— .,— —L?
Y2 2vk2 “b

i{2
—

2rk2
cosh – 1

1 i{z
—=— L?
Y3 2vk3 b’

4~(d2+12)-21d2

a(d2– 12) —

i~z

()

‘d2+12
= ~ cosh–l

3
d’_~2 “

As in general

zc=~~, kL={~.

(70)

(71)

(72)

(73)

(74)

Throughout this section, a = w/2, where w is the half-

width of the strip. The above formulas are accurate when

d>a=w/2. (75)

At d = a, the error in Z, is 8 percent; at d = 4a, the error

in ZC is 0.7 percent.

VIII. APPLICATIONS AND CONCLUSION

The characteristic impedance and the complex wave-

number together with the associated series impedance and

shunt admittance per unit length have been de]ived for a

horizontal wire with radius a or strip with width 2 w = 4a

over a two-layer region. This consists of a layer of dielec-

tric with thickness 1 over a conducting or dielectric half-

space. The formulas can take account of losses in any or

all of the four regions.

Possible applications of the results include long wave

antennas [3] erected (a) on concrete or asphalt slabs over

the earth or (b) over swamps, shallow ponds, lakes, or tidal

basins. The theory also applies to horizontal dipoles over

any two-layer region. In the determination of the

wavenumber k L and characteristic impedance ZC for the

current, radiation into the surrounding air is assumed to be
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small compared to the power transferred along the con-

ductors and along the boundary as a lateral wave or in the

dielectric layer as a surface wave. The complete field

generated by the known currents in the conductors can be

calculated from the formulas for the elementary horizontal

dipole over a two-layer region [7].

The new theory of the strip transmission line applies to

the elevated microstrip [8, p. 90, fig. 1.45(b)]; it does not

apply directly to open rnicrostrip transmission lines [8,

p. 89, fig. 1.42(a)] because the conducting strip is located

above and not on the dielectric substrate. It is nevertheless

closely related to the quasi-TEM approximations used in

open microstrip theory [8, pp. 96–99]. This depends on the

empirical definition of an effective permittivity for the

substrate [9]. When condition (75) is satisfied (instead of

d = O for microstrip), the TEM mode is an accurate de-

scription of the propagation. As in microstrip, two di-

electrics— air and the substrate with thickness 1— are

involved and an effective single permittivity is readily

defined analytically. With (61) it is

(76)

In addition, the new theory includes the losses in the

conducting strip, the dielectric substrate, and the conduct-

ing ground plane. Since they are due primarily to skin

effect, they are frequency-dependent and this frequency

dependence is properly contained in the formulas for the

wavenumber and the characteristic impedance. It is signifi-

cant, in this connection, that the losses in microstrip at

frequencies above 40 GHz are primarily due to skin effect

in the two conductors.
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