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Wire and Strip Conductors over a
Dielectric-Coated Conducting or
Dielectric Half-Space

RONOLD W. P. KING, LIFE FELLOW, IEEE

Abstract — The complex wavenumber and characteristic impedance are
determined for a wire or flat strip over a dielectric-coated half-space that
may be a conductor or a dielectric with large permittivity. Elevated
microstrip is an example of the configuration. The properties of the wire as
an antenna or transmission line are determined from those of the insulated
antenna with a two-layer eccentric insulation. The theory is extended to
the strip conductor with the help of a comparison of the tubular and strip
conductors over a perfectly conducting half-space.

I. INTRODUCTION

HE PROPERTIES of the horizontal wire antenna

over a conducting earth are well known [1]. They were
derived from the theory of the dipole antenna with an
eccentric dielectric coating [2]. This analysis was subse-
quently extended to the wave antenna of the generalized
Beverage type [3]. The procedure carried out in this earlier
study is applied in this paper to the horizontal wire an-
tenna over the same half-space but when it is coated with a
layer of dielectric material. In the formulation use is made
of the analysis of the shielded transmission line with an
eccentric inner conductor [4], [5]. As a final step, the
properties of the strip antenna or transmission line are
derived from those of the wire conductor with the help of
the identity of the integral equations for coupled tubular
and strip conductors [6].

The analysis resembles that of open-wire transmission
lines in that radiation into the air is neglected in the
determination of the wavenumber and characteristic
impedance and, therefore, of the current distribution. This
is an excellent approximation when the conducting wire or
strip is located at small electrical distances from the dielec-
tric-coated half-space. Once the current distribution is
known in terms of its dependence on the electrical proper-
ties of the several media involved, the electromagnetic field
can be calculated from the known field of a unit horizontal
dipole over a three-layered region [7].
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Fig. 1. Three equipotential circles with p, =0.3, p,=0.6, and p, =1.
The wavenumbers of the four regions bounded by these circles are &,
j=12,3.4.

II. REVIEW OF THE THEORY OF THE TWO-LAYER
ECCENTRICALLY INSULATED CONDUCTOR

The cross section of the cylindrical structure to be
studied initially is shown in Fig. 1. It consists of four
regions separated by three circular boundaries with the
radii a, b, and c. These boundaries are equipotential
surfaces for the vector potential 4 =24, and the scalar
potential ¢. The four regions are: region 1, a conducting
wire or tube with radius a and complex wavenumber
k=B, +ia;=(1+i)wp,o,/2)"?% region 2, air with the
radius b and the wavenumber k, = w(pq€,)"/?; Tegion 3, a
dielectric with radius ¢ and the wavenumber &k, = 8; +ia,
= i ?(€; + i, /w)/? with 6, /we; < 1; and region 4, the
half-space outside the dielectric with the wavenumber &,
=B, +ia, = wpk*(e, + io, /@) It is required that

[kl > k3] > ks (1)
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It is assumed that in each cross-sectional plane the two-
dimensional Laplace equation is an adequate approxima-
tion, but that the wave equation applies in the axial
direction, z. Thus, for the vector potential, the equation in
each transverse plane is

ar4, 9%4, 0 5

_ g — =
dx? dy? )

and the appropriate solution is
12

pol,(z x+dy)’+ y?
A= 0 ()ln ( 0)2 Y —20K(z) (3)

27 (x—do)"+y?

where d,, is a constant distance and K =p,I,(z)/27 is a
function of the axial coordinate z alone. I,(z) is the total
axial current in the conductor with the radius a. The
equipotential circles with constant p are defined by

(x+d,)"+y*= e""[(x —dy)*+ y2]
or
dg

~dycoth2p)’+ y2= —5—

(4)

where 0 < p < o. Note that the surface p=0 is the yz

plane, x =0; and p = co defines the line x =d,, y=0.
The center of a typical circle is at

x =d,coth2p y=0 (5)
and its radius is
dy
= . 6
d sinh2p (6)

The three circles shown in Fig. 1 have their centers at

x,=dycoth2p, x,=dycoth2p, x.=dycoth2p,

(7)
and the radii
d, - dy dy
~ Sinh2p,”

(8)

‘= sinh2p, N sinh2p,

Note that the circle of zero radius and p =co is at
)

xo=d,=asinh2p, = bsinh2p, = csinh2p,.

The distance d,, is a principal parameter.

The points of intersection of the circles with the x axis
are at
j=a,b,c.

(10)

x;,=dytanhp;, and x, =d,cothp,

The shortest distance between the circle p, and p, is

(11)

I =x,, — x;,=d,(tanh p, —tanh p,).

It is a second principal parameter.
It is convenient to refer the potentials on the several
circles to the potential on circle ¢ and define the following
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Fig. 2. Center-driven two-layer (regions 2 and 3) eccentrically insulated
conductor (region 1) in an infinite dielectric or conducting region 4.
potential differences:
Waz = Aaz - Acz = 2K(pa - pc)
sz = Abz - Acz = 2K(pb - pc)‘

(12)
(13)

The equipotential circles can be expressed in terms of
their radii and the distances D between their centers.
These latter are

D, =x,—-x,

a DbcExc—xb

D,y=x,— x, Dy=x,— d,. (14)
With (7) and (8),
c2_a2_D2 b2_a2_D2b
2p,=cosh™' | ———=| =cosh™} | ———
2aD,, 2aD,,
(152)
2. —cosh-t| S P PE _ [P Day
i 26D,, 26D,
(15b)
5 - ¢?—a*+ D2 o c2-b*+ D}
p. = COS —“m““ = COS ZCDbC
(15¢)

The normalized potential differences =W, /K are ob-
tained with the formula

cosh™*x —cosh™! y =cosh™! [xy - \/GZ -1)(y*-1) ]
(16)

Thus,
Q, =2 pot [ 2 P (17a)
= — = a
ac (ptl pC) COS 2ac
i, b*+ ¢ — D},
Qb£=2(pb—pc) = cosh T (171’))
. a*+b*— D}
Qu=2(p, — py) =cosh™! | —————]. (17c)
III. TRANSMISSION-LINE PROPERTIES OF THE

Two-LAYER ECCENTRICALLY
INSULATED CONDUCTOR

The eccentrically insulated center-driven conductor is
shown in Fig. 2. The wavenumber k; for the current in the
conductor and the characteristic impedance Z, are given in
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Fig. 3. Two-layer eccentrically insulated conductor in an infinite con-

ducting region as a transmission line.

[5]. With minor changes in the notation, they are

A(D,.,0) ]
- — 1
k; =k,F|1+ v } (18)
ki, 2
Z,= 2ak, [Qab+(k2/k3) ch] (19)

where {, ={,=1207 €,

Q 1/2
F= = (20)
|:Qab+(k2/k3)29bc:I
and
) Hél)(k4c) (D, D, " H;S)(kw)
A(Dawo) = T 2 Z ( 2 ) (1) k °
Hj (k4c) m=1 4 H) o (kye)

(21)

The current in the center-driven conductor when it has
the length 24 is
iVy sink;(h—|z|)

L(z)=-5—+

(22)

When the conductor is infinitely long or is terminated in
its characteristic impedance as shown in Fig. 3, the current
is

cosk;h

v
L(z) =ﬁe’k“, z>0.

4

(23)

1V. THEeORY OF THE TWO-LAYER ECCENTRICALLY
INSULATED CONDUCTOR OVER A CONDUCTING
OR DIELECTRIC HALF-SPACE

The next step in the analysis is to let the radius ¢ of the
outer circular boundary between regions 3 and 4 become
infinite (¢ — o0) so that p, » 0 and region 4 becomes a
half-space with the plane boundary at x =0, as shown in
Fig. 4. If the nearest distance to the circle p, is maintained
at x;;, — x,. =1, it follows from (10) that

p,=tanh~1(//d,)
since x;, = 0. With (8) the radius b is
b= I
sinh [2tanh = (1/d,)]

(24)

(25)

and, with (7), the center of the circle is at

x, =dycoth [2tanh ' (1/d,)]. (26)

In order to take the limit ¢ — 00, x_ — o0, it is necessary
to obtain an explicit formula for b in terms of the distance
I, the radius c, and the distance D, = x_,— d,,. With (7) and
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ks/ ko
Zdo \\~
y \\b\\
~
dO \\
\~
//XIb={ kl \\\~\
~
0 = x> ®
AT A =
X170 | lxiq=s
“Y
2d,

2dy,  3d,

X

ad, 5d,  6d,

\ %

Fig. 4. Three equipotential circles with p, = 0, p, = 0.088, and p, =1

(8), it follows that (x,/c)* —(d,/c)?> =1 so that

dy=yx2—c* or x,=yd§+c?
Dy=x,—yx2—c* or x,=(DZ+c*)/2D,. (27b)
It follows from (7) and (8) with (15b), viz.,

(27a)

%5 _ cosh2p, = © b~ Pie 28
b O T TD, (28)
that
b>+2x,D,,— ¢+ D2 =0, (29)
With x,=x,—D,, and D,,=c—b—|,
2e=1)(x,—c)—-1?
2= D)(x-0) »
2x,—c+1)
With (27a),
2=y +di—c)-1?
b= ( ¢ ) . (31)

2P +dt—c+1)
It is now possible to let ¢ — o0, x, — 0. With y/c? + dZ —

c+(d§/2¢), it follows that 2(c—I)yc*+d2 —¢) -
2¢(d§/2¢)=d¢ and yc?> +d3 — ¢ — 0, so that

a2
== (32)
The center of the circle p, is at
dé+1?
Xp=b+l= T (33)

The corresponding formulas for the circle with the ra-
dius a are obtained from

X, — x,=bcosh2p, ~acosh2p,
¢>—b*~-D? 2-a’>-D2 2
~ 2Dp,, 2D (34)

ac
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where
D, =x,~x, and D, =x,—x,. (35)
When (35) is used in (34), this can be rearranged to give
(= ) (re = x,)(x, = x,) = 2 =1]
+b*(x,—x,)—a*(x,—x,)=0. (36)

When ¢ — o0, x, — o0, this yields

x;—x2=b*—a’ (37)
With (32) and (33),
(a3+) (a3-r)
x:=x2—-b’+a’= TR +a?

=di+a?

(38)

or

x,=d=\d}+a®> and d,=vVd?>-a®. (39)

It is convenient to denote the distance x, from the bound-
ary x = 0 to the center of the conductor with the radius a
by d since this is a principal parameter.

It remains to evaluate the functions Q defined in
(172)-(17¢) in the limit ¢— o0, x,=yc*+d} — 0. The
results are

[e*+c=D2
Q... =cosh™| —r—s

x
~ cosh™! — = cosh™! — (40a)
a a
9 oot D
be 2bc
X, g+
= cosh 1;=cosh ! prIE
L (dr-arer
= cosh m (40b)
0 ot LY D4
ab 2ab
_a2+b2—(x,,—x )?
= h_1 l
cos b

so that, with (32), (33) and (39),

d(d?>—a®+1?)-21(d* - a?)
@ == 1) } (40c)

These quantities are expressed in terms of the thickness /
of the dielectric layer, the radius a of the conductor, and
the height d of its center over the plane boundary x =0
between the dielectric layer and the conducting or dielec-
tric half-space.

= -1
Q,,=cosh

757
As a check on (40a)~(40c), use can be made of (20), viz.,

Q
(41)

2 ac

Qab-l-(k2/kS)29bc ‘

It is readily verified with the formula cosh™!x +cosh™! y
=cosh™![xy + \/(x2 —1)(»*—1)] that, when k,=k,,
F?=1.
It remains to evalvate A(D,.,0) in (21) in the limit
¢— o0, x,— 00. The first step is to determine
‘DacDO (xc_‘xa)(‘xc_do)
- 2

c? c

_ (Va3 + & = Jaz+a®)(Jag+ > — )

2
d2+ 2
_)(1__\/0“

c

(-4

m

(42)

With (42), (21) becomes

HV (k4 * d
M +2 Z 1——
H{P(kye) 20 ¢

- " HO (ke)
¢ HQ. (kye)

A(D,,.0) =

. (43)

1t is shown in [1] that, in the limit ¢ — oo,

A(D,,,0)

k,c =4(4)

1 K (A4 jorl (A
P 1( )+”7'1( )
A? A 24

=+ =+t
3+45 1575

_I(A A A (44)

j|1/2,

where K; and I; are the modified Bessel functions, and

A=k (d+Vd>—a?). (45)

When (44), (41) and (40a)—(40c) are substituted in (18)
and (19), these give

Q.+a(4) 17
B 46
“ kz{ﬂab+(k2/k3)29bc] (46)
Zo= 52 (Rt (/)R] [, ] @)

V. THE SERIES IMPEDANCE AND SHUNT
ADMITTANCE PER UNIT LENGTH

The complex wavenumber and characteristic impedance
can be expressed in terms of the series impedance per unit
length z, and the shunt admittance per unit length y,.
These are related to k; and Z_, by

ky =y T ZL)L (48)

Z.=\z;/yL



758 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 4, APRIL 1989

or
— i —_ e 1
z;,=—ik, Z,=z°+z,

1 Z 1 1

4

—_—=—=— —,

ook ¥,y
With (46) and (47),

. l ikigz 2
z, =24z} =— R[Qab+(k2/k3) ch]

[0y
=7 Qo [Qac+ A(A)]

(49)

(50)

(51)

so that the external impedance per unit length z¢ and the
internal impedance per.unit length z; of the conducting

half-space are

fwpyg
€= —jwlt=— Q
z iw 5 ac
i iw
s 2“°A(A)
w
iwpg | 1 Kl(A)+i7rII(A)
T 7 |42 4 24
4 £ & e
—_7 __.l__—.-+ + PR
13 745 71575 ”
with

A=k,(d+Vd?>-a?).

(52)

(53a)

(53b)

The formula (51) does not include the internal impedance

of the conductor. This can be added to (51) so that

i 1 e
Z; =21+ 2z,+z

where

) ik, 1—i [ wpy\?
a= 2wao; 27 )

20,
With (46) and (47), (50) gives

ylL = 21512{2 [Qab + (kz/k3)29bc] = ylz + ;13‘
so that
1 174 1 i§
R T
With §, /k, =1/weq, $rk,/k3 =1/(we; + ias),
_ 2miwe
BT TieeT Qs

270y, 2wiwe,

ch Qb

V3=83 T iwey=
C

(54)

(55)

(56)

(57)

(58)

Fig. 5. Approximately equivalent two-layer eccentrically insulated

conductors.

(a) )

Fig. 6. Approximately equivalent two-layer insulated conductors when
the radius of the boundary between regions 3 and 4 is infinte.

The final complete formulas for k; and Z, are

kl 1/2
Q.+ +A(A4)
Woao
kL = k2 2 . 2 (59)
szb+(k2/k3) ch
$, 5 12
zZ = E [Qab + (kz/k3) ch]
k 1/2
[9+ - +A(A)] . (60)
Woao;

When regions 1 and 4 are perfect conductors and regions 2
and 3 are perfect dielectrics,

When €;=¢,,

Q 1/2
k, =k - 61
L 2I:szzb-}'_(fl/€3)9bc:l ( )
¢
Zc= 537-{Qac[ﬂab+(€2/€3)ﬂbc]}1/2' (62)
¢
k, =k, Z = 2—;—9 (63)

These are the values for a perfectly conducting wire over a
perfectly conducting half-space.

THE ECCENTRICALLY INSULATED TUBULAR
CONDUCTOR OVER A DIELECTRIC-COATED
DIELECTRIC OR CONDUCTING HALF-SPACE

The formulas for k; and Z_ derived in Sections IV and
V apply to the structure shown in Fig. 5(a) when the radius
¢ of the boundary between regions 3 and 4 is made infinite
to obtain the configuration in Fig. 6(a). Region 4 is now a
balf-space with a plane boundary between it and the
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dielectric layer which has a large radius b and a2 minimum
thickness /.

In practice, the configuration shown in Fig. 6(b) is more
useful. It consists of the conductor (region 1) with radius a
in air (region 2) over a half-space (region 4) that is coated
with a dielectric (region 3) with the uniform thickness /.
This can be looked upon as the eccentrically insulated
conductor shown in Fig. 5(b) in the limit ¢ — 00, b — c0.

It is shown in [5] that the electromagnetic field on the
circle p, in Fig. 5(a) decreases rapidly outside the 60°
angle when a/c=0.1 and d/c=1/3, so that the field in
the remaining 300° is very small and it is immaterial
whether the dielectric in region 3 has the shape shown in
Fig. 5(a) or Fig. 5(b) insofar as the values of k; and Z_ are
concerned, It follows that (18) and (19) should be good
approximations for the configuration of Fig. 5(b) and, in
the limit when ¢ — o0, (59) and (60) for Fig. 6(a) should be
good approximations for Fig. 6(b). Note, however, that
with / and b fixed, d — I cannot be made arbitrarily small
without simultaneously letting the radius a approach the
large radius b which goes with a small value of /.

VII. THE STRIP CONDUCTOR OVER A
DieLECTRIC-COATED HALF-SPACE

The formulas (59)—(63) for the circular conductor over a
dielectric-coated half-space can be modified to apply to a
flat strip conductor (Fig. 7) with the width 2w = 44 and
the thickness 7. This latter is assumed to be small com-
pared with the skin depth, so that the internal impedance
per unit length of the strip is
1

= = . 64
a 4a0.t (64)

It is shown in [6] that the constants z; and y, of the
stripline with width 2w = 44 differ from those of the line
with circular tubular conductors given in (51) and (56)
only in the substitution of Vd? + a? for d. It follows that,
with (64) and (51),

z;=z°+zj+ 7z} (65)
where

iwpho
27

. Vd? + a?
a

e=

Q

ac

2= —jwlf=—

Wl

T
)
27 2wpyac,t
iwiy
27

(66)
(67) .

cosh™

im

zj=-—

L=
Z4-—‘

A(A4) (68)

where
1

A(A4) = 2[—

K,(4)
A

N iml,(A)
24

A2

A 4 A&

N3 45 T 1575

+ --.)r (69)
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Region 1, k; 2w=40
Region 2, k, g
L Region 3. k3 7NN
Region 4, k,

Fig. 7. Suip conductor in air over a dielectric-coated half-space.

and
A=k (d+Vd*+a?). (70)
Similarly,
1 1 1
—=—t— (71)
o Y2 W3
where
1 g,
‘ )’2~277k2 “
LR Va2 + a2 (d?+ 1) —21d> 0’
T ok, a(d?—1?) (72)
1 i§.
_=_2_9bc
y; 2wk,
it, [ar+ 1P
= 73
Sk, O\ (73)

As in general

kp=y{—zy. (74)

Throughout this section, a =w/2, where w is the half-
width of the strip. The above formulas are accurate when

(75)

At d = a, the error in Z_ is 8 percent; at d = 4a, the error
in Z, is 0.7 percent.

Z =z /y1,

dza=w/2.

VIIL

The characteristic impedance and the complex wave-
number together with the associated series impedance and
shunt admittance per unit length have been derived for a
horizontal wire with radius @ or strip with width 2w = 4a
over a two-layer region. This consists of a layer of dielec-
tric with thickness / over a conducting or dielectric half-
space. The formulas can take account of losses in any or
all of the four regions.

Possible applications of the results include long wave
antennas [3] erected (a) on concrete or asphalt slabs over
the earth or (b) over swamps, shallow ponds, lakes, or tidal
basins. The theory also applies to horizontal dipoles over
any two-layer region. In the determination of the
wavenumber k,; and characteristic impedance Z, for the
current, radiation into the surrounding air is assumed to be

APPLICATIONS AND CONCLUSION
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small compared to the power transferred along the con-
ductors and along the boundary as a lateral wave or in the
dielectric layer as a surface wave. The complete field
generated by the known currents in the conductors can be
calculated from the formulas for the elementary horizontal
dipole over a two-layer region [7].

The new theory of the strip transmission line applies to
the elevated microstrip [8, p. 90, fig. 1.45(b)); it does not
apply directly to open microstrip transmission lines [8,
p. 89, fig. 1.42(a)] because the conducting strip is located
above and not on the dielectric substrate. It is nevertheless
closely related to the quasi-TEM approximations used in
open microstrip theory [8, pp. 96-99]. This depends on the
empirical -definition of an effective permittivity for the
substrate [9]. When condition (75) is satisfied (instead of
d =0 for microstrip), the TEM mode is an accurate de-
scription of the propagation. As in microstrip, two di-
electrics—air and the substrate with thickness /—are
involved and an effective single permittivity is readily
defined analytically. With (61) it is

-1 €—2—1Qzlb+€3419bc
€ = .

¢ Q

ac

(76)

In addition, the new theory includes the losses in the
conducting strip, the dielectric substrate, and the conduct-
ing ground plane. Since they are due primarily to skin
effect, they are frequency-dependent and this frequency
dependence is properly contained in the formulas for the
wavenumber and the characteristic impedance. It is signifi-
cant, in this connection, that the losses in microstrip at
frequencies above 40 GHz are primarily due to skin effect
in the two conductors. '
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